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Abstract

A new finite integral transform method [Int. J. Heat Mass Transfer 44 (2001) 3307] is applied to the wave model of

conduction. It is compared with a standard method of solution of the hyperbolic conduction equation. The temperature

fields coincide. The chosen test problem and its results bring to the foreground some of the difficulties of standard

technique applications. These difficulties are by-passed when using the new method.

The Cattaneo Vernotte model is then tested through a comparison of its results with transient molecular dynamics

simulations taken from Volz [Transferts de chaleur aux temps ultra-courts par la technique de la dynamique

mol�eeculaire, Th�eese, Univ. de Poitiers, 1996]. When the used parameters of the continuous model are near their equi-

librium values, the agreement remains weakly qualitative. An adaptation of these parameter values, notably the dif-

fusion time scale, can give a quantitative coincidence; but never is the agreement obtained for both studied variables

(internal energy and flux density). These observations are discussed. Various causes liable to justify the realized ad-

aptations of parameters are considered. None of them gives a right explanation. Concerning the impossibility of making

both variables coincide, the source of conflicts is as much in the constitutive law as in the energy conservation law. The

key seems to be in thermodynamics.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of our previous paper [1] was to investigate a

new finite integral transform (FIT) which suits the

solving of linear systems of coupled partial derivative

equations. When used within the framework of the

Cattaneo-Vernotte model [2,3] the proposed transform

leads to a method for solving hyperbolic thermal prob-

lems under less stringent hypotheses than was previously

needed. Furthermore, it separates the variables in non-

homogeneous media. This new method of solution is

tested in the first part of this paper.

Of course the newmethod does not resolve the issue of

the relevance of the Cattaneo–Vernotte (C–V) law [2,3]

which, although sound from a physical standpoint, 1
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even remains under suspicion. We list a few common

criticisms:

• The use of the continuity hypothesis loses credibility

when the medium consists of few atomic layers.

• Non-physical results such as over-or-under-shoot-

ing, 1 may appear.

• Other constitutive internal laws such as the dual phase-

lag model of Tzou [4] yield good results [5], and are

also credible candidates in a non-Fourier context.

The controversy is not over yet in view of the difficul-

ties of performing conclusive experiments. The weakness

of space and time scales where non-Fourier phenomena

become relevant (see Ref. [6], for example) in homoge-

neous media, is the first well-known constraint. Pure ini-

tial and boundary conditions are difficult to control

because of surrounding constraints; since a given internal

constitutive model cannot be used without associated

initial and boundary conditions and since, of course, these
ed.
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Nomenclature

a0 thermal diffusivity

~aakðtÞ transformed function (standard finite inte-

gral transform)

e thickness

E;EðtÞ internal energy

Hð�Þ Heaviside’s function

Knp phonon Knudsen number (Knp ¼
ffiffiffiffiffiffiffiffiffiffi
3a0s0

p
=

e0 ¼
ffiffiffiffiffi
3s

p
)

p̂pkðtÞ; ðf̂fH
k ðtÞÞ transform of a two-component

vector field (transform of a particular

field)

rk second component of Z�k

t time

t1 rise time of a ramp

T ; T ðx; tÞ temperature

Uk ;UkðxÞ eigenfunction of a standard diffusion

problem

v wave velocity

V k first component of Z�k

x abscissa

Zk complex vector field

Greek symbols

D difference

dð�Þ Dirac’s function

u, uðx; tÞ, wðx; tÞ flux density

k thermal conductivity

l2
k eigenvalue (diffusion problem)

hðx; tÞ temperature

s Cattaneo Vernotte time constant

s0D diffusion time (s0D ¼ e02=a0)
X angular frequency

Subscripts and superscripts
0 dimensioned value

^ new finite integral transform

� standard finite integral transform

� adjoint problem

H boundary-homogeneous problem

I initial value

k eigenelement number

ref reference value or scaling factor

1, 2 layer number (Clausius problem)
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conditions act upon the results, possible deficiencies are

not easily interpreted. Recent [6–8], or less recent [9] ar-

ticles show the influence of such conditions, and interface

constitutive laws [1] play as decisive a role as internal

constitutive laws. The weak number of available experi-

ments and the difficulty in attaining a pure problem

prompt the use of other independent theoretical models in

the testing of an internal continuous law. Transient mo-

lecular dynamics (M-D) simulations [10–12] suits this

testing. These simulations are notwithin the framework of

a continuous medium; furthermore, since initial and

boundary conditions are achieved by controlling the

motion of atoms, and since only one medium may be

considered in the numerical experiments, questions about

the interface constitutive law disappear in a comparison

with a continuous model. The problem is thus, in princi-

ple, extremely pure and a comparative test of the used

internal constitutive law is indeed meaningful.

In the second part of the paper, we use the results of

Volz’s M-D simulations [10] in a comparison with the

analytical solution of the hyperbolic conduction prob-

lem obtained with the method introduced in [1]. As is

shown below, the method brings a new, but yet incom-

plete insight into the C–V model.
2. Validation of the new method [1]

We chose a homogeneous medium because we can

then apply a standard method of separation of variables
[13]. A comparison of the new method with a similar

but standard one is thus possible. Moreover, we con-

sider a 1-D problem; in which case we may obtain with

a great accuracy as many eigenvalues as we wish, and

can thus avoid truncation errors when expanding the

solution.

The chosen problem clearly illustrates the differences

between the methods; in a standard context––where the

problem is reduced to the hyperbolic equation––it is

necessary to choose which of the thermal variables

should be eliminated. We use a temperature formula-

tion, and thus compare the results for the temperature

field only. In view of our previous comments, the treated

problem retains an academic character.

2.1. The setting

We consider a film with constant thermophysical

properties. This film, which has been kept a long time at

a constant temperature, is submitted, in a first stage, to a

transient flux ramp on its left-hand side. Then, after a

rising time t1, this flux is maintained at the value it has

reached at that time. The right hand side of the film

keeps the initial constant temperature value over the

entire duration of the simulation.

When the thickness of the film and the diffusion time

are chosen as scaling factors for space and time vari-

ables, respectively, temperature and flux density inside

the film are governed by the following system of non-

dimensional equations:
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where the normalizing flux density, u0
ref , is the constant

incoming flux density when t1 < t and the normalizing

temperature is e0u0
ref=k

0.

The boundary conditions read as:

For x ¼ 0 :
u ¼ t=t1 if 0 < t6 t1;

u ¼ 1 if t1 < t:

�
ð2aÞ

For x ¼ 1 : T ¼ 0: ð2bÞ

The initial conditions are

T ðx; 0Þ ¼ 0 and uðx; 0Þ ¼ 0 06 x6 1: ð3Þ
2.2. Implementing both methods of solution 2

We merely recall the various steps. More details

about the solution are given in Appendices A (new

method) and B (standard method).

The first step consists in splitting up the solution into

the sum of a quasi-steady field and a boundary-homo-

geneous field. When applying the new method, the

quasi-steady field is obtained upon considering system

(1) for time-independent fields; in the associated

boundary conditions (2), the time variable becomes a

dummy parameter. When applying standard methods,

the flux density must be eliminated, not only within the

system (1), but also from the boundary condition (2a),

so as to obtain a well-posed problem. This is a first

difference between the two methods of solution. It is

usual to assume that the constitutive law is valid on the

boundary; we have used that hypothesis in Appendix B.

In a second step, the eigenvalue problem is solved.

Usually, this step is more involved when implementing

the new method because the eigenvalues, which were

real-valued when using standard methods, become

complex-valued. But, when considering a homogeneous

medium, the eigenvalues of the latter are obtained from

the eigenvalues of the former as the roots of a second

degree polynomial (cf. Appendix A).

The third step is devoted to the computation of the

time coefficients of the expansion of the solution of the

boundary-homogeneous problem. This computation

makes use of the FITs. In the new method, the trans-

form reads as [1]
2 The meaning of ‘‘solution’’ differs in the two methods. In

method [1], the solution is a vector whose first component is the

temperature and whose second component is the flux density,

while, in the standard context, the solution is the temperature

field only (the flux-density solution corresponds to a different

problem).
p̂pkðtÞ ¼
1

hZk ;Z�ki

Z 1

0

ðhðx; tÞV kðxÞ þ swðx; tÞ�rrkðxÞÞdx;

ð4Þ

where Zk(resp. Z�k) is a vector eigenfunction of the ei-

genvalue problem (resp., of the adjoint eigenvalue

problem), hðx; tÞ and wðx; tÞ are two fields which are

defined on the domain under investigation, and V kðxÞ
and rkðxÞ are the two components of Z�k .

In the standard method, the transform reads as

~aakðtÞ ¼
1

ðUk ;UkÞ

Z 1

0

hðx; tÞUkðxÞdx; ð5Þ

where UkðxÞ is an eigenfunction of the standard diffusion

eigenvalue problem (cf. Appendix B).

When applied to the equations which govern the

homogeneous-boundary problem, the FIT (4), (resp.,

(5)) leads to a first order differential initial-value prob-

lem (resp., to a second order initial-value problem).

Upon completion of the previous steps, the final step

consists in building an expansion for the solution. When

using the FIT (4), the temperature field reads as

T ðx; tÞ ¼ t
t1
ð1� xÞ þ

X
k

ðp̂pHk1ðtÞ þ p̂pHk2ðtÞÞ cos lkx 0 < t6 t1

ð6aÞ

and

T ðx; tÞ ¼ 1� xþ
X
k

ðf̂fH
k1ðtÞ þ f̂fH

k2ðtÞÞ cos lkx t1 < t:

ð6bÞ

When using the FIT (5), it reads in turn as

T ðx; tÞ ¼ t
t1
ð1� xÞ þ

X
k

ðp̂pHk1ðtÞ þ p̂pHk2ðtÞÞ coslkx

þ s
t1

1

 
� x� 2

X
k

coslkx
l2
k

!
0 < t6 t1 ð7Þ

and reduces to (6b) during the second stage (t1 < t).
In the writing of the solution with a standard FIT, we

have converted the ~aakðtÞ coefficient into its equivalent

p̂pkðtÞ for a more convenient comparison.

2.3. Numerical results

As seen above, a proper comparison of numerical

results between both methods is useful only during the

first stage of the thermal process. Moreover, upon in-

spection of Eq. (7), we conclude that the only difference

resides in the accuracy of the representation of ð1� xÞ
by its expansion:

2
X
k

coslkx
l2
k

:
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Fig. 1. Instantaneous temperature profiles at different times.

Rise-time of the flux ramp t1 ¼ 0:05ðs=2Þ.
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Fig. 2. Instantaneous temperature profiles at different times.

Rise-time of the flux ramp t1 ¼ 0:2ð2sÞ.
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Numerical differences will thus be solely due to a trun-

cation effect in the series. Alternate series appear in both

formulae and it is well known that these series converge

slowly when the time is of the order of a decimal fraction

of the unit time. It will thus take––whichever method is

used––a very large number of terms for a satisfactory

accuracy. Experience shows that the safest criterion in

matters of accuracy is the definition of the number zero

in early times. As will be seen later, there exists inside the

film, at the beginning of the thermal process, an area

where the temperature remains zero for small time. If we

want this zero temperature to be expressed by a nu-

merical result of order 10�6, it takes about 4000 terms in

both expansions, but if we accept a result of order 10�4,

250–300 terms are enough. Whenever accuracy requires

many terms, differences between either method are

negligible at the scale of a plot. We conclude that both

methods give the same results for the temperature field.

We also present, below, some results on the temper-

ature time-derivative field. Since the computed formulae

for this field are the same in both methods (as seen by

deriving Eqs. (6) and (7)), our goal is merely to obtain

useful information on this field. At the numerical level,

experience shows that it takes five times more terms in

the series expansions to obtain this field with the same

accuracy as the temperature field. This difficulty is but a

reminder of the limitations of such expansion methods

for discontinuous functions.

The transient linear flux which enters the left

boundary between times t ¼ 0 and t ¼ t1 generates a

perturbation whose first front corresponds to the first

slope breaking at time t ¼ 0, and whose second front

corresponds to the slope breaking at time t ¼ t1. This
perturbation propagates, while diffusing, at a constant

velocity v. In all the presented results, the C–V relax-

ation time is fixed at s ¼ 0:1, the corresponding reduced

velocity is thus:

v ¼ ðsÞ�1=2 ¼ 3:162:

As long as the time is less than 1=v (0.3162), the first

front has not reached the right-hand side (x ¼ 1) of the

film and there exists an area where the layer remains in

its initial state. After this time, the perturbation reflects

on the right boundary; for a period whose duration is

equal to the rise time (t1) of the ramp, the reflected part

interferes with the incident part. This period is followed

by a purer propagation/diffusion phenomenon of the

back-perturbation and so on.

The fronts of the perturbation may be located on the

instantaneous temperature profiles of Figs. 1 and 2,

thanks to the slope-breaking of the curves. The shorter

the rise time of the ramp, the more visible the slope-

breaking as observed by comparing the temperature

profiles of Fig. 1 (where t1 ¼ s=2) to the profiles of Fig. 2

(where t1 ¼ 2s). The perturbation, with constant thick-

ness (vt1) on each figure, is easily identifiable during the
first forward traveling period, but, after the first reflec-

tion, the interference and the diffusion mask the back-

wave. The left-hand side reflection is almost invisible.

The temperature profiles quickly become quasi-linear

profiles.

Figs. 3 and 4 show the instantaneous temperature

time-derivative profiles for the rise times t1 ¼ s=10 and

t1 ¼ s=2 respectively. The propagation/reflection phe-

nomenon is much more evident on these figures because

of the discontinuities which mark the fronts of the per-
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Fig. 3. Instantaneous profiles of temperature time derivative.

Rise-time of the flux ramp t1 ¼ 0:01ðs=10Þ.
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Fig. 4. Instantaneous profiles of temperature time derivative.

Rise-time of the flux ramp t1 ¼ 0:05ðs=2Þ.
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Fig. 5. Instantaneous profiles of temperature time derivative at

time t1.
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turbation and result in a dented profile. Moreover, the

reflection on the right boundary occurs with a change of

the sign of o2T
ot ox, which distinctly separates reflected and

incident waves. The phenomenon of multiple reflections

may be followed for rather long time intervals (up to

10s), even if, through diffusion, the amplitude of the

dents decreases with time.
The shorter the rise time of the ramp, the higher the

value of the time derivative on the left-hand side of the

film during the first stage of the thermal process. This is

evidenced in Fig. 5 where profiles, at the fixed time t1, for
four values of this rise time are gathered together. This is

a consequence of the energy balance in the layer, namelyZ 1

0

oT
ot

ðx; t1Þdx ¼ uð0; t1Þ � uð1; t1Þ:

As t1 is less than 1=v, no flux crosses the right boundary

(x ¼ 1); the area under a given temperature time-deriv-

ative profile remains constant and equal to the imposed

flux on the left boundary. The dent amplitude is thus

higher and higher as its thickness (vt1) becomes smaller

and smaller. At the limit t1 ! 0, the oT
ot profile is a Dirac’s

delta function, as confirmed by the computation of this

limit with the help of the analytical formula.

When considering the response to a flux-step

(t1 ! 0), the initial temperature time-derivative field,

which is a datum for the methods of solution which are

based on the standard hyperbolic equation, must be a

Dirac’s delta function. Hence a singularity: when the rise

time of the ramp is not zero, the initial temperature

time-derivative field for a flux ramp problem is zero all

over the medium (including boundaries) but not when

the rise time vanishes. Frankel et al. [14] mentioned the

necessary use of generalized functions when considering

step changes in surface temperature. As already ex-

plained in the introduction of [1], it is impossible of

abruptly varying a function at a given time while

maintaining its time derivative to zero at that time.

Our observation shows that the initial time-derivative
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temperature field must also be a Dirac’s function when a

flux-step is considered on a boundary.

These mathematical intricacies become irrelevant

when implementing the new method. The use of physical

variables, i.e. temperature and flux density, alleviates the

necessity of resorting to generalized functions. More-

over, the standard assumption on the validity of the

constitutive law on boundaries––a matter of long-

standing debate––is not introduced.
3. Comparison of the results of the Cattaneo Vernotte

model with transient molecular dynamics simulations

3.1. A few basics on molecular dynamics simulations

M-D techniques permit the computation of transport

properties of materials by applying the laws of me-

chanics to particles such as molecules and atoms. The

solution of the equations of motion of interacting par-

ticles, is obtained by numerical integration. In the con-

text of thermal engineering, most studies aim at

computing the thermal conductivity of materials [15–17].

Only the final steady state is of importance in such a case

and the results are compared to Fourier’s law. Few

studies investigate transient simulations [10–12], in

which case local equilibrium is not reached, at least at

the beginning of the simulations. In all cases powerful

computers and efficient computation schemes are nec-

essary, because of the smallness of the significant scales.

In solids, the space scale is the inter-atomic mean dis-

tance and the time scale is the oscillating period of at-

oms. But the difficulties may be lesser in some crystalline

media, firstly because of the periodic structure of the

medium, secondly because of the straightforwardness of

the expression for the inter-atomic forces.

Volz [10] chooses an argon crystal in which temper-

atures range from 66 to 250 K, 3 depending on the ex-

periment. This choice saves computation time because of

the simple two-body form of the Lennard-Jones poten-

tial in the case of argon. The step-by-step solution yields

the particle velocities and their displacements. The in-

ternal energy of particles in interaction with their

neighbors is computed, as is their kinetic energy. Sto-

chastic considerations allow the computation of tem-

perature of particle sets (through the kinetic energy) and

of thermal flux densities (through an expression which is

derived from the energy balance equation). Initial and

boundary conditions are met by controlling the motion

of atoms; specific thermostat techniques (acting on the

kinetic energy of particle sets) are used for temperature

control. These microscopic controls of the simulations
3 The medium remains in a solid state up to a temperature of

263 K.
allow for a high purity level for the initial and boundary

conditions. Even when considering that additional time

and space means––which decrease the localization and

dynamic sensitivity––are needed in order to reduce the

statistical errors, the numerical experiments provide in-

formation which is out of reach of true experiments.

3.2. Transient response to a temperature step

3.2.1. Characteristics of the simulation

The argon crystal has been kept at an equilibrium

temperature of 67 K which will be chosen as the zero

temperature of the thermometric scale. At the beginning,

the left side temperature of the simulation cell rises to T 0
0

(the values 144 and 240 K are used for this controlled

given temperature). Periodic boundary conditions are

imposed so that the problem is reduced to the study of a

layer whose right boundary is adiabatic. The thickness of

this layer corresponds to 40 cells of the argon cubic face-

centered lattice.

The analytic method does not allow a thermal de-

pendence of parameters. In the following comparison we

will choose values of these parameters near their equi-

librium value at 144 K (one of the T 0
0 value). The re-

tained characteristics are shown in Table 1.

In the M-D experiments, the left boundary temper-

ature (T 0
0) control is performed through a microscopic

control of the temperature of a thin film which is adja-

cent to the studied layer; a thermostat, whose time

constant remains less than 0.1 ps in the reported ex-

periments, pilots the temperature rise of the thin film,

from the equilibrium temperature to the controlled

temperature. The weak value of the time constant, when

compared to the C–V time constant (2.35 ps), permits us

to view the problem either as a two-stage non-stationary

boundary valued problem (with a very short first stage),

as was done in Section 2, or as a quasi-temperature step

problem. Numerical feasibility and physical consider-

ations motivated our choice of the former.

3.2.2. Computation of the solution of the continuous

problem

The left boundary condition is not established in-

stantaneously, this particularity being modeled as a

time-varying condition. Thus, during a first stage (du-

ration t1) the boundary temperature rises linearly from 0

to 1. After that time, the temperature is kept at 1.

Formulae derived from the method [1] are given in

Appendix C. Test runs on the computation of the flux

showed that, for x ¼ 0, and a given small time step dt, the
expansion which was based on the temperature step re-

sponse (cf. Appendix C) converged more slowly than that

based on the non-stationary boundary valued problem

when choosing t1 ¼ dt. Moreover, the numerical result, for

a given number of terms in the expansions, is always closer

to the theoretical result (see below) for the latter case. Such



Table 1

Characteristics of the layer

Thickness (refer-

ence space scale)

Diffusion coefficient Diffusion time scale

(reference time

scale)

C–V time constant Thermal wave

velocity

SI value 19 · 10�9 (m) 5 · 10�6 (m2/s) 72 · 10�12 (s) 2.35· 10�12 (s) 1460 (m/s)

Non-dimensional value 1 1 1 0.03 5.77

0.00 0.20 0.40 0.60
t

0.00

2.00

4.00

6.00

8.00

10.00

5.77  --------------

4.08  ------------

ϕ (0,t)

Fig. 7. Incoming flux density (x ¼ 0). (- - -) s ¼ 0 (Fourier mod-

el); (– ÆÆ– ÆÆ–) s ¼ 0:01; ( ) s ¼ 0:03 (characteristics of Table 1);

(–) s ¼ 0:06.
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considerations prompt the use of formulae corresponding

to the two stage problem. In the following results, the first

stage duration is always equal to the plotting time step.

We select flux results which are less currently re-

ported in the literature as a first example. Fig. 6 shows

the transient flux density which crosses various planes.

The motion of a wave which reflects on the adiabatic

right face of the layer is clear, but the ‘‘visibility’’ is

limited to one bounce only as can be seen by considering

the heated left face (x ¼ 0) curve. Fig. 7, where four

values of the C–V time constants are used, shows that,

as the time tends to zero, the flux which crosses the

heated left boundary increases as s decreases. The value
of that flux-density jump can be estimated for the tem-

perature step response problem. The temperature inside

the layer behaves as a traveling wave whose velocity is v,
independently of the right-hand boundary condition

(and even in a semi-infinite medium), thus, in the vicinity

of the initial time, the temperature may be written as

T ðx; tÞ ffi H t
�

� x
v

�
t ! 0þ:
0.00 0.40 0.80
t

0.00

2.00

4.00

6.00

x=0

x=0.2

x=0.4

x=0.6

x=0.8

ϕ 
(x

,t)

Fig. 6. Time behavior of flux densities crossing different ab-

scissas. Thermal characteristics of Table 1.
The energy balance equation allows an estimation of the

flux density which crosses the heated boundary to be

made. We obtain

uðx; tÞ ffi
Z 1

0

d t
�

� x
v

�
dx t ! 0þ:

Its value at t ¼ 0þ is

/ð0; 0þÞ ¼ v ¼ 1=
ffiffiffi
s

p
:

The result is independent of the right limit condition and

it demonstrates that the solution of Ref. [18] where the

flux density limit is zero at t ¼ 0þ, does not satisfy the

energy balance equation. Because of the plotting time

step in Fig. 7, (dt ¼ 0:003), the computed value and the

above theoretical value (plotted in the figure) are not

exactly the same but the discrepancy has been checked

to decrease with decreasing time steps.

3.2.3. Comparison with M-D results

A first comparison of our results with M-D results is

shown in Fig. 8 for the flux which crosses the left side of

the layer. In the original M-D results [10], the flux is

divided by the first computed value (i.e. at time

t ¼ 0:06). This time, which corresponds to the maximum
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of the flux curve in Ref. [18] (the used reference in Ref.

[10] for a comparison), is unfortunately too high to

provide an accurate picture of the early time behavior.

Nevertheless, Volz [10] noticed, in his experiments, the

high value of the flux immediately after the initial time;

he has stressed the inconsistency between this observa-

tion and Ref. [18]’s results. But, except for that obser-

vation, it appears that, when the parameters of Table 1

are used, the C–V model results (curve (A)) are not

compatible with the M-D simulation results. A modifi-

cation of the s value will not improve the situation since

values greater than 0.03 (curve (B)) or less than 0.03

(curve (C)) yield curves which stay farther apart from

the M-D results. The Fourier model results (curve (C))

demonstrate that the origin of the misfit lies in the dif-

fusion time scale value: The equilibrium (0 crossing flux)

is reached as early as t ¼ 0:2 as far as M-D results are
concerned, although, as can be seen in Fig. 6, this

equilibrium is not reached at t ¼ 1, (it is reached beyond

t ¼ 2) when the parameters of Table 1 are used.

The integration in space of the local energy balance

equation yields:

dE
dt

� uð0; tÞ ¼ 0: ð8Þ

Since the used macroscopic model assumes the stan-

dard equilibrium definition of the internal energy, the

instantaneous internal energy of the layer is also the

space mean temperature of the layer, T ðtÞ. In M-D

simulations, where flux and temperature are computed

independently a difference may occur.

Fig. 8b compares C–V results (with parameter values

of Table 1) with M-D results for the internal energy.

Only the T 0
0 ¼ 240 K case is reported. The high value of



0.00 0.40 0.80 1.20 1.60
t

0.00

0.10

0.20

0.30

0.40

0.50
0.20 0.60 1.00 1.40 1.80

0.00

0.10

0.20

0.30

0.40

0.50

a

b

T2

_

T2

_

Fig. 9. Clausius experiment: Spatial mean temperature of the

right-hand layer. ( ) C–V model (s ¼ 0:1�); (–) M-D model. (a)

T 0I
1 ¼ 88:5 K; T 0I

2 ¼ 136:5 K and (b) T 0I
1 ¼ 66 K; T 0I

2 ¼ 103 K.

P. Duhamel / International Journal of Heat and Mass Transfer 47 (2004) 573–588 581
the incoming flux near the beginning of the process is

confirmed by considering the slope of the internal energy

(owing to Eq. (8), the derivative of E is the incoming

flux). But there is no quantitative agreement either with

the results of C–V model (solid line) or the results of

Fourier model (dotted line).

3.3. Clausius experiment

3.3.1. Characteristics of M-D simulations

Two 10-nm thick layers are separated by an adiabatic

surface. They are also insulated from the remaining

crystal and brought up to two distinct temperatures (T 0I
1 ,

T 0I
2 ) which are then stabilized. Several temperature pairs

ranging from 66 to 214 K have been investigated [10,12].

At the initial time the adiabatic partition, which sepa-

rates the layers, is removed and the time variation of

different thermal variables is then followed.

In the following comparison to the C–Vmodel, we will

choose the value s ¼ 0:1 of the C–V reduced time con-

stant; with a diffusion coefficient value of 4.1· 10�6 m2/s

[12] and a layer thickness, e0 ¼ 10 nm, the significant

diffusion time scale is ¼ 24.4 ps. The corresponding C–V

time constant is thus 2.4 ps. As previously said, non-lin-

earities cannot be taken into account in the used contin-

uous model. The chosen parameter values are only rough

estimate values in the considered temperature range.

3.3.2. Solution of the macroscopic continuous problem

The symmetry of the domain implies that the thermal

problem which is described in Section 3.3.1 boils down

to the study of the temperature step response of each

layer where opposite boundaries are adiabatic.

We choose the equilibrium temperature (ðT 0I
1 þ

T 0I
2 Þ=2) as the thermometric origin and we reduce the

temperatures by dividing them by DT 0I ¼ T 0I
2 � T 0I

1 . The

initial dimensionless temperature is thus )1/2 for the first
(left) layer and 1/2 for the second (right) layer. The

chosen flux density scale is u0
ref ¼ k0DT 0I=e0. Only the

solution in the right layer is studied; the left-hand layer

solution might be immediately computed as

T1ðx1; tÞ
u1ðx1; tÞ

� �
¼ �T2ð1� x1; tÞ

u2ð1� x1; tÞ

� �
0 < x1 < 1; t > 0:

The boundary conditions are:

T2ð0; tÞ ¼ 0 and u2ð1; tÞ ¼ 0 t > 0:

The solution T2ðx2; tÞ, u2ðx2; tÞ is easily deduced from the

detailed solution of Appendix C.

3.3.3. Comparison of results

Fig. 9 permits us to compare the time behavior of the

spatial mean temperature T2ðtÞ of the right layer for two
configurations of the initial heating. As can be seen here,
the spatial mean computation did not allow the removal

of noise in the M-D results. At first glance, the time

behaviors are similar for both models, but, the diffusion

time scale (24.4 ps) chosen for the C–V model applica-

tion is ill-suited: it is too high in Fig. 9a but it is too

weak in Fig. 9b. This may show a thermal dependence of

the parameters for the C–V model. It may be added that

a less visible discrepancy between the results of the two

models can be noticed. Independently of the noise, Volz

[10] indicates the presence of deterministic oscillations in

M-D signals. These oscillations––a little more visible in

Fig. 9a––are missing on the C–V signals. The only sin-

gularity of the latter is at time t ¼ 0:63 (Fig. 11b), the

time at which the wave created by the contact of the

layers at the initial time comes back to the interface

between the layers. The deterministic oscillations which

appear on M-D signals are probably due to that trav-

eling wave, but our efforts at adapting the s value so as

to recover the fluctuating behavior of the mean tem-

perature have failed. The reason is that, when increasing

the s value, oscillations become visible but, simulta-

neously, negative temperatures appear in the results as

soon as the wave bounces back to the interface for the

first time. This appearance of a temperature which os-

cillates on either side of the long term equilibrium tem-

perature when the C–V time constant increases is a

known phenomenon which has been observed in true

experimental cryogenic conditions (see [5], p. 860).

Fig. 10 shows the flux density at the interface be-

tween the two layers; the M-D results (crosses in Fig. 12)

are very noisy. A running average fit with a window

width of 11 values (b curve) has thus been added to the

original results of Ref. [10]. The local C–V model results

appear on the a curve. A significant discrepancy between

the two kinds of models is clearly shown: Whereas, ac-

cording to the M-D computations, the flux density ex-

hibits periodic oscillations with zero mean, the C–V
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model results is a flux density that monotonously in-

creases from the value �1=2
ffiffiffi
s

p
ð�1:58Þ to 0. The already

noted singularity at time t ¼ 0:63 in Fig. 9 is recovered

as a flux jump, but the step is barely noticeable at the

graph scale. A different C–V model, built on a global

thermal balance, has been proposed in Ref. [10]; the

equation which governs the interface flux density,

u2ð0; tÞ becomes:

s
du2

dt
þ DT
2sK

þ u2 ¼ 0 with DT ¼ T 2ðtÞ � T 1ðtÞ ¼ 2T 2ðtÞ:

The coefficient 2sK is a phenomenological coefficient [10]

which may be interpreted as the ratio of a thermal re-

sistance 1=K 0 to the thermal resistance e0=k0 of the layer;
furthermore, the ratio s=sK controls the analytical form

of solution. A damped sine curve of the form:

u2 ¼ � expð�t=2sÞ
sK

cosðXt � aÞ with X ¼

ffiffiffiffiffiffiffiffiffiffiffi
s
sK
� 1

4

q
s

is obtained (dotted line in Fig. 12). The datum a ¼ 0 is

proposed in Ref. [10]; the value sK ¼ 0:018 is deduced

from the same reference, from the previously retained

value for s(0.1).
Though the global model solution generates oscilla-

tions, its solution is still far from the M-D results, no-

tably at time t ¼ 0þ where the flux density of the global

model is extremely large ()55). In the same way, at times
greater than the diffusion time scale (t > 1), the behavior

is different; the flux seems oscillating in the M-D results

with a significant amplitude to the order of 1=2
ffiffiffi
s

p
, and

this up to t ¼ 2:0, although for local and global C–V

models this flux is stabilized at 0.

3.4. Discussion

Reported results show a clear disagreement between

M-D results and continuous C–V model results. The

only positive points, as already mentioned, remains of a

qualitative nature:

• In the temperature step response problem the incom-

ing flux is very high at the beginning of the process

whichever model is used.

• In the Clausius problem the space mean tempera-

ture of each layer has a similar time behavior in

both models (ignoring the fluctuations of M-D re-

sults).

However, no quantitative agreement is obtained,

mainly because of a large difference in long term dynamic

properties. Modifying the diffusion time scale––one of

the parameters of C–V model––is our first attempt to

compel the continuous model to give the same results as

the microscopic model.

Fig. 11 shows the obtained results for the tempera-

ture step response case when the diffusion time scale is

drastically reduced. The fitting is made from M-D in-

coming flux results (Fig. 11a); we would like to add that

the C–V time constant is also modified so as to make the

sharp variation of the flux, observed near the first sim-

ulation dots (M-D results), coincide with the first bounce

of the flux wave (C–V results) on the heated face. The

best fits correspond to a diffusion time of 8.64 ps and a

C–V time constant of 0.54 ps (s ¼ 0:0625) when

T 0
0 ¼ 144 K, although the diffusion time is 5.4 ps and the

C–V time is 0.86 ps (s ¼ 0:16) when T 0
0 ¼ 240 K.

The internal energy, with the same previous adjust-

ments, appears in Fig. 11b. Only the case corresponding

to T 0
0 ¼ 240 K is considered because the other case is not

accessible in Ref. [10]; we must remember that it corre-

sponds to the solid line in Fig. 8b. The situation greatly

improves, but it may be seen that the results of the two

models cannot coincide in both Fig. 11a and b.

Fig. 12 reports Clausius experiment; the diffusion

time scale is modified in the same way. Except for os-

cillations, both models can give the same results when

s0D ¼ 12:2 ps (Fig. 12a) and when s0D ¼ 40:7 ps (Fig.

12b). The corresponding temperature couples of M-D

simulations are reported in figure caption. These modi-

fications cannot make the interface flux coincide at all;

the corresponding curves are thus not shown.

If we want the Cattaneo Vernotte model to be more

than a kind of blackbox, we must think about the



Fig. 11. Temperature step response with diffusion time fits.
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physical meaning of these modifications and, possibly,

justify them.

Layer thickness is a deciding parameter of the diffu-

sion time. It operates explicitly with a square depen-

dence and may also operate implicitly.

In M-D simulations, boundary conditions are

achieved over several atomic planes, so, the thickness of

the corresponding layer is not perfectly defined. Owing

to the weak size of simulation layers, adding or sub-

tracting few atomic planes to a given layer does induce

variations in s0D. But these variations remain error

terms––say less than 50%––and cannot explain the di-
vision by a factor 10 which has been made for the

temperature step response case. Moreover the inaccu-

racy must be the same inside a given experiment since

boundary condition achievement is the same. This is not

verified at all inside Clausius experiment where the one

of the new scale is four times higher than the other. An

erroneous thickness value due to boundary condition

achievement in M-D simulations is not a dominating

cause of erroneous s0D values.

Layer thickness may also sometimes modify the

thermal conductivity, which acts on the diffusion time.

As observed by Lukes et al. [17] in equilibrium M-D



Fig. 12. Clausius experiment: Spatial mean temperature of the right-hand layer with diffusion time fits. ( ) C–V model, (–) M-D

model. (a) T 0I
1 ¼ 88:5 K; T 0I

2 ¼ 136:5 K (s0D ¼ 12:2 ps s0 ¼ 1:22 ps) and (b) T 0I
1 ¼ 66 K; T 0I

2 ¼ 103 K (s0D ¼ 40:7 ps, s0 ¼ 4:07 ps).
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simulations, this occurs in adiabatic layers––as opposed

to layers with periodic boundary conditions––when the

phonon Knudsen number, Knp, (ratio of the phonon

mean free path to the thickness of the layer) is too high.

The corresponding lower limit is near Knp ¼ 0:15 [19].

The present Clausius experiments are concerned with

this phenomenon. It may be firstly noticed that the

chosen diffusivity value (4.1 · 10�6 m2/s) has already

been reduced in comparison with the value appearing in

Table 1. When all assigned to a thickness effect on

conductivity, this reduction is not justified in the (a)

experiment (Fig. 12a): On the contrary, the conductivity

ought to be greater than the bulk conductivity for the

new weak value of the diffusion time being explained. In

the (b) experiment (Fig. 12b), the reduction is too weak:

As seen, a 50% reduction is better and is in accordance

with Ref. [17]’s experiments. Unfortunately, since the

geometry does not change inside Clausius experiments

the previously noticed inconsistency remains.

Variations of conductivity with temperature cannot

be rigorously treated since our macroscopic model is

linear. Thus, we only examine whether this kind of non-

linearity could explain the diffusion time variations. In

the considered temperature ranges, conductivity varies

as T 0�1. Thus, the diffusion time scale should increase––

not linearly necessarily––with the mean temperature of

the studied layers. The contrary is observed, as much
inside the temperature step response problem (the new

s0D value is lower for the step 67–240 K than it is for the

step 67–144 K), as inside the Clausius experiments.

No explanation based on previously known equilib-

rium data or results may be called for.

Another troublesome fact is that never is the coinci-

dence between energy and flux results of both models,

possible at the same time. These variables are linked

together through the energy balance equation (Eq. (8)).

The continuous model of course verifies this equation

which is the very basis of the computation. M-D results

are however less satisfactory.

Considering the temperature step response problem

(Fig. 8 or 11), the interval showing a constant value of

the slope on Fig. 8b (or Fig. 11b) is not recovered in Fig.

8a (or Fig. 11a) as a constant flux interval. Eq. (8) is

badly verified.

The same difficulty arises in Clausius experiment.

Integrating Eq. (8) in the right-hand layer leads:

E2ðtÞ � E2ð0Þ ¼
Z t

0

u2ð0; uÞdu: ð9Þ

If the equality between E2ðtÞ and T 2ðtÞ is accepted for the

microscopic model as for the macroscopic model, M-D

results are linked together, in Figs. 9 and 10, in the same

way as C–V results. Thus, when the mean temperature

of the layer goes from 1/2 to 1/4––which is roughly ob-
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served for M-D results in Fig. 9b when the time goes

from 0 to 0.4––the left-hand side of Eq. (9) takes the

value 1=4� 1=2 ¼ �1=4. This is only possible if the flux

density (right-hand side of Eq. (9)) exhibits an asym-

metry which favors negative values in the interval ]0,0.4].

Such an asymmetry does not appear in Fig. 10 for M-D

results (b curve).

This difficulty in energy conservation goes beyond

the definition of any constitutive law. It prompts several

questions:

i(i) Is defining macroscopic variables allowed?

(ii) If allowed, are macroscopic variables––notably the

internal energy––written correctly?

These questions are not within the scope of this arti-

cle. However we would point out that Volz [10] tested

another model of internal energy where a quadratic flux

density term was added to the standard temperature term

[20,21]. He concludes that this model is ill-suited to his

results. He also mentions the existence of a slight thermo-

acoustical coupling in the experiments concerning the

temperature step response. This coupling which does not

change the look of response curves is responsible on a

systematic weak gap––about 10% high––between the

internal energy of the layer and its mean temperature.

Clausius experiments which are also concerned with the

energy conservation difficulty, exhibit no such coupling.

A last point shows how great the difficulty in com-

paring microscopic to macroscopic results is. The two

considered M-D experiments of parts 3.2 and 3.3 differ

through the achievement of boundary conditions; more

(as long as the flux is concerned) or less large differences

in dynamic characteristics correspond to these boundary

condition achievements. Considering the macroscopic

model, only one basic problem can be associated with

both experiments: A layer with one adiabatic face is

submitted to a temperature step on the other face. The

mutual disposal of two layers of this kind permits both

cases to be treated. Thus the basic dynamics, which only

depends on the boundary homogeneous problem (see

Appendix C), is the same in both problems. One can

easily imagine that a simple parameter fit will not be able

to lead to the fundamentally different observed behaviors

in M-D results; as previously seen, the interface flux

shows a quasi-absence of oscillations in the temperature

step response experiment but, on the other hand, it shows

undamped oscillations up to very large times (2.5 times

the diffusion time scale) in Clausius experiment. This

last peculiarity appears in other studies. In a certainly

different framework where the transient behavior is

not studied, Lukes et al. [17] recommend, in thin film 4
4 Boundary condition achievement is the same as in the

present Clausius experiment.
M-D simulations, computation times up to 20 times the

diffusion time scale if one is to obtain a steady state. In

the microscopic model, boundary condition achievement

which appears to almost suppress phonons in one case

(periodic boundary conditions) exacerbates, on the other

hand, their presence in the other case (adiabatic

boundaries). This microscopic role of boundaries is not

specifically taken into account in macroscopic models.

Only a s increase can give the model the adequate wavy

characteristics, but such an increase is not compatible

with the used M-D mean temperature results.

One must conclude that, at least as long as the flux is

concerned, the C–V model cannot predict the observed

transient behavior of adiabatic films inM-D experiments.
4. Conclusion

The selected test problem (part 2) has shown that the

new method of solution of the wave model of conduc-

tion gives the same results as a standard method.

Moreover, the test brings to light some of the advanta-

ges of the new integral transform technique, most no-

tably when the boundaries of the studied domain are not

submitted to the same kind of boundary conditions

(Dirichlet on part of the boundary and Neumann on the

rest of the boundary). The test problem also shows that,

when studying the response to a step in boundary con-

ditions, the initial time-derivative field of temperature

field must be a generalized function, although the step is

a flux step, in a manner similar to what happens when

the step is a temperature step. This remark applies to

standard methods of solution but is of no relevance to

the new method, since no derivative field is used as data

at the initial time in the new method.

Comparison of the Cattaneo Vernotte model to a

transient M-D model (part 3) shows a rather tenuous

qualitative agreement. The values of thermal parameters

must be different from bulk equilibrium values if one

strives to obtain a quantitative agreement.

Modifying the diffusion time scale values is the main

way for bringing nearer the long term dynamic behavior

of the two models; it will be noticed that this long term

dynamics is not very different from that of the Fourier

model. Nevertheless no objective argument permits the

realized modifications to be justified. The C–V model

can suit one or the other of the particularly used M-D

results, but foreseeing the diffusion time scale values in

another given context is not possible at present.

Even when adapting parameters, the results of the

two models cannot coincide for both studied variables

(internal energy and flux density) at the same time. Two

deep reasons seem to cause this anomaly.

Firstly it has been observed that the thermal bal-

ance is not satisfactory in M-D results. Since this

balance leads to the first partial derivative equation of
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the continuous problem, it is of course verified. This

explains the incomplete success of parameter fits. Sec-

ondly it is seen that the dynamics of M-D results is fairly

different from one kind of experiment to the other. This

is especially true for the flux. But, in the continuous

model, only one basic problem corresponds to both

kinds of experiment; the dynamic properties are thus

imposed by the same family of eigenvalues. The only

adjustment of parameters turns out to be inadequate to

completely change these dynamics.

The results of microscopic and macroscopic models

are more consistent when considering the response to a

temperature step experiment. In the later case the pho-

non Knudsen number is weaker (Knp ffi 0:3) than it is in

the Clausius experiment (Knp ffi 0:55). One might deduce

that the Cattaneo Vernotte model cannot be used when

Knp exceeds a value contained within 1/2 and 1/3. Nev-

ertheless, the large dissimilarity between the two M-D

experiments, although the phonon Knudsen number

hardly doubles, prompts us to consider the upper limit

with caution. In fact a special microscopic effect of

boundary closeness which appears in isolated films is not

modeled in the used continuous model; this phenome-

non may affect the purely space scale effect which is

expressed in the phonon Knudsen number.

As we have seen the third part of the paper raises

more questions that can be solved. These questions

concern as much the constitutive law as the energy

conservation law, that is to say a basic thermodynamic

problem. Whatever the case, based on the previous

comparison with transient M-D results, the upper limit

of applicability of the Cattaneo Vernotte model would

be near a phonon Knudsen number value of 0.5.
Appendix A. Solution of the test problem with the help of

the new method

The solution vector T is split up into two vectors as

follows:

T ¼ TS þ TH:

The quasi-stationary field is:

TS ¼
s
t1
ð1� xÞ

s
t1

" #
if 06 s6 t1 and

TS ¼
1� x

1

� �
if t1 < s:

Since there is only one layer in the domain, the transfer

matrix of the layer (cf. [1], p. 3315) is the transfer matrix of

the film and, for the boundary conditions under consid-

eration, the characteristic equation is obtained by cancel-

ing the first coefficient of the transfer matrix. We obtain:

cosl ¼ 0 with sx2 � xþ l2 ¼ 0:
The eigenvalues of the problem are the roots of these

equations. There are thus two roots xkp ðp ¼ 1; 2Þ cor-

responding to each lk ¼ p=2þ kp ðk ¼ 0; 1; 2 . . .Þ root

of the first equation. The vector eigenfunctions of the

problem and of the adjoint problem are

Zkp ¼
"

cos lkx
xkp

lk
sinlkx

#
Z�kp ¼

cos lkx
� �xxkp

lk
sinlkx

" #
:

The temperature in the homogenous boundary value

problem expands along a real basis (cos lkx). When the

FIT (4) is applied to the homogeneous boundary value

problem, the following initial value problems are ob-

tained. During the first stage the problem reads as

dp̂pHkp
dt

þ xkpp̂pHkp þ ŝskp ¼ 0 p ¼ 1; 2; 0 < t6 t1

with

p̂pkpð0Þ ¼ 0 and

ŝskp ¼
1

hZkp; Z�kpi

Z 1

0

ð1� xÞ
t1

coslkx
�

� s
t1

xkp

lk
sin lkx

�
dx;

whose solution is

p̂pHkpðtÞ ¼
2ð1� sxkpÞð1� e�xkp tÞ

t1xkpðsx2
kp � l2

kÞ
p ¼ 1; 2:

In a similar manner, the solution during the second stage

is

f̂fH
kp ðtÞ ¼ p̂pHkpðt1Þe�xkpðt�t1Þ p ¼ 1; 2:

The first component of the solution vector T is the

temperature field T ðx; tÞ given in Eqs. (6a,b).
Appendix B. Solution of the test problem with the help of

a standard method

Eliminating the flux density uðx; tÞ between the two

equations of system (1), the following standard hyper-

bolic equation is obtained:

s
o2T
ot2

þ oT
ot

� o2T
ox2

¼ 0 0 < x < 1; 0 < t:

If we assume that the C–V law is valid on boundaries (a

standard hypothesis), the boundary conditions are ex-

pressed in terms of the temperature field only. The well-

posed boundary conditions are thus

x ¼ 0
oT
ox ¼ �ðt þ sÞ=t1 when 0 < t6 t1
oT
ox ¼ �1 when t1 < t

8><
>:

x ¼ 1; T ¼ 0 when 0 < t:

Temperature and time-derivative temperature fields are

0 at the initial time, in the domain as well as on its

boundaries.
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The same splitting technique as for the new method

of solutions yields the following quasi-stationary tem-

perature field:

T Sðx; sÞ ¼ ðsþ sÞð1� xÞ=t1 0 < s6 t1;

T SðxÞ ¼ 1� x t1 < s:

The eigenvalue problem which must be associated with

the standard FIT (5) is the standard eigenvalue problem

of diffusion problems, namely,

d2Uk

dx2
þ l2

kU
k ¼ 0 0 < x < 1;

dUk

dx
¼ 0 x ¼ 0;

Uk ¼ 0 x ¼ 1:

The eigenvalues l2
k are those of Appendix A. The cor-

responding eigenfunctions are Uk ¼ coslkx.
Application of the FIT (5) to the following bound-

ary-homogeneous problems:

s
o2TH

ot2
þ oTH

ot
� o2TH

ox2
þ 1� x

t1
¼ 0 0 < t6 t1;

s
o2TH

ot2
þ oTH

ot
� o2TH

ox2
¼ 0 t1 < t

yields the second order initial-value problems which

govern the time coefficient ~aaHk or ~bbHk of the expansion

series for THðx; tÞ.
In the first stage, the problem reads as

s
d2~aaHk
dt2

þ d~aaHk
dt

þ l2
k~aa

H
k þ 2

t1

Z 1

0

ð1� xÞUkðxÞdx ¼ 0 0 < t6 t1

with

~aaHk ð0Þ ¼ � 2s
t1

Z 1

0

ð1� xÞUkðxÞdx;

d~aaHk
dt

ð0Þ ¼ � 2

t1

Z 1

0

ð1� xÞUkðxÞdx:

Then,

~aaHk ðtÞ ¼ p̂pHk1ðtÞ þ p̂pHk2ðtÞ �
2s
t1l2

k

0 < t6 t1:

In the second stage a similar problem arises and its so-

lution is

~bbHk ðtÞ ¼ f̂fH
k1ðtÞ þ f̂fH

k2ðtÞ t1 < t:

Note that the initial values ~bbHk ðt1Þ and
d~bbHk
dt ðt1Þ are de-

duced from T ðx; t1Þ and oT
ot ðx; t1Þ which are in turn

computed by running the first stage till t1.
The complete solution is then constructed; hence Eq.

(7) for the first stage and Eq. (6b) for the second stage.
Appendix C. Solution of a two-stage given temperature

problem in a slab

The problem reads as

oT
ot

þ ou
ox

¼ 0

ou
ot

þ 1

s
oT
ox

þ u
s
¼ 0

8>><
>>: 0 < x < 1; 0 < t: ð10Þ

The right boundary condition is:

uð1; tÞ ¼ 0 0 < t:

The left boundary condition is:

T ð0; tÞ ¼ t=t1 0 < t6 t1;

T ð0; tÞ ¼ 1 t1 < t:

Temperature and flux density fields are 0 at t ¼ 0, in the

domain as well as on its boundaries.

The eigenvalues are those obtained in Appendix A.

The vector eigenfunctions are

Zkp ¼
�lk
xkp

sinlkx
coslkx

� �
Z�kp ¼

�lk
xkp

sin lkx
� cos lkx

� �
:

We set

T ðx; tÞ ¼ THðx; tÞ þ t=t1 0 < t6 t1;

T ðx; tÞ ¼ THðx; tÞ þ 1 t1 < t:

The boundary-homogeneous problem leads to the fol-

lowing expansion of the temperature field:

THðx; tÞ ¼
X
k

AkðtÞ sin lkx:

Setting

gkðuÞ ¼ e�u=2s cosh

ffiffiffiffiffi
Dk

p

2s
u

�
þ ð1� 2sl2

kÞffiffiffiffiffi
Dk

p sinh

ffiffiffiffiffi
Dk

p

2s
u
�
;

where Dk ¼ 1� 4sl2
k , the time-expansion coefficient

AkðtÞ becomes:

either

AkðtÞ ¼
�2

l3
k t1

ð1� gkðtÞÞ 0 < t6 t1;

or

AkðtÞ ¼
�2

l3
k t1

ðgkðt � t1Þ � gkðtÞÞ t1 < t:

The flux density reads as

uðx; tÞð¼ /Hðx; tÞÞ ¼
X
k

BkðtÞ cos lkx:
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Setting

hkðuÞ ¼ e�u=2s cosh

ffiffiffiffiffi
Dk

p

2s
u

�
þ 1ffiffiffiffiffi

Dk
p sinh

ffiffiffiffiffi
Dk

p

2s
u
�

the time-expansion coefficient BkðtÞ becomes:

either

BkðtÞ ¼
2

l2
k t1

ð1� hkðtÞÞ 0 < t6 t1

or

BkðtÞ ¼
2

l2
k t1

ðhkðt � t1Þ � hkðtÞÞ t1 < t:

Remark that, as t1 ! 0, the second stage formulae give

the response to a step temperature change problem

whose solution is more easily obtained directly. For in-

stance, the flux density expansion reads

uðx; tÞ ¼
X
k

4e�t=2sffiffiffiffiffi
Dk

p sinh

ffiffiffiffiffi
Dk

p

2s
t cos lkx 0 < t:
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